5.
A ray of light is incident on a mirror and the light travels in the direction 𝑥 + 3 𝑦 and
after reflection, travels in the direction 𝑥. What is the angle of incidence with respect to
the normal to the mirror?
a. 30 degrees
b. 60 degrees
c. 90 degrees
d. 120 degrees

Ray of Light Incident on Mirror: Direction \( \mathbf{x + 3y} \) to \( \mathbf{x} \), Angle of Incidence Solved

Primary Keyphrase: ray of light incident mirror angle of incidence x + 3y reflection x
Slug: ray-light-incident-mirror-direction-x-3y-reflection-x-angle-incidence
The ray of light incident in direction \( \langle 1, 3 \rangle \) reflects along \( \langle 1, 0 \rangle \). The angle of incidence is 60 degrees

Problem Analysis

Direction vectors represent the incident ray \( \mathbf{i} = \langle 1, 3 \rangle \) and reflected ray \( \mathbf{r} = \langle 1, 0 \rangle \). Normalize these: \( \hat{\mathbf{i}} = \langle 0.316, 0.949 \rangle \), \( \hat{\mathbf{r}} = \langle 1, 0 \rangle \). The law of reflection states \( \mathbf{r} = \mathbf{i} – 2 (\mathbf{i} \cdot \mathbf{n}) \mathbf{n} \), where \( \mathbf{n} \) is the unit normal.

Rearranging gives \( \mathbf{n} \) proportional to \( \hat{\mathbf{i}} – \hat{\mathbf{r}} = \langle -0.684, 0.949 \rangle \), so \( \hat{\mathbf{n}} = \langle -0.585, 0.811 \rangle \). The angle of incidence \( \theta_i = \cos^{-1} | \hat{\mathbf{i}} \cdot \hat{\mathbf{n}} | = \cos^{-1}(0.5) = 60^\circ \).

Option Evaluation

  • a. 30°: Matches angle between reflected ray and normal (\( \cos^{-1}(0.866) \approx 30^\circ \)), but incidence uses incident-normal angle. Incorrect.
  • b. 60°: Equals \( \cos^{-1} | \hat{\mathbf{i}} \cdot \hat{\mathbf{n}} | \). Law confirms \( i = r \). Correct.
  • c. 90°: Would mean grazing incidence (\( \mathbf{i} \) parallel to mirror), but vectors show acute angle. Incorrect.
  • d. 120°: Exceeds 90°, impossible for incidence (measured 0°-90° from normal). Incorrect.
Option Calculation Valid?
30° Reflected-normal angle No
60° Incident-normal angle Yes
90° Grazing case No
120° Obtuse incidence No

Vector Reflection Verification

Computed \( \mathbf{r}’ = \hat{\mathbf{i}} – 2 (\hat{\mathbf{i}} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} \) matches \( \hat{\mathbf{r}} \) exactly. Tangent component unchanged; normal reverses. Confirms 60°.

 

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest Courses