12.2.      Oxidative decarboxylation of isocitrate

Isocitrate dehydrogenase convert Isocitrate  into is C5 compound, a-ketoglutarate. It is a  oxidative decarboxylation reaction.

The reaction takes place in 2 stages :

  1. Dehydrogenation of isocitrate to oxalosuccinate which remains bound to the enzyme. NAD+ or NADP+ is required as electron acceptor in the reaction, and
  2. Decarboxylation of oxalosuccinate to \alpha-ketoglutarate.

Both the reactions are irreversible. The \DeltaG is negative for this reaction. This is the first ‘committed step’ in the Krebs cycle.

Isocitrate dehydrogenase are two types, one requiring NAD+ as electron acceptor (NAD+-specific) and the other requiring NADP+ (NADP+-specific). Both the types appear to participate in the citric acid cycle, but the NAD+-specific isocitrate dehydrogenase is predominant. The NAD+-specific enzyme is found only in mitochondria, whereas the NADP+-specific enzyme is located in both mitochondria and the cytosol. Both the enzymes require the divalent metal ions (Mg+2 or Mn+2) for activity.

12.3.      Oxidative decarboxylation of \alpha-ketoglutarate

Two successive oxidative decarboxylation steps are the peculiar feature of the citric acid cycle. In this reaction, a-ketoglutarate is oxidatively decarboxylated into C4 thiol ester, succinyl-CoA and CO2 is released. The \DeltaG°  of the reaction has a high negative. This  reaction is virtually identical to the pyruvate dehydrogenase complex (PDC) reaction in that both promote the oxidation of an \alpha-keto acid with loss of the carboxyl group as CO2.

This step is irreversible. It also produces NADH. The a-ketoglutarate dehydrogenase complex share similar properties with  PDC. It is also consist of 3 enzyme components, viz., a-ketoglutarate dehydrogenase or a-ketoglutarate decarboxylase, transsuccinylase and dihydrolipoyl dehydrogenase. it also requires 5 coenzymes, as required by pyruvate dehydrogenase complex, for activity, viz., thiamine pyrophosphate, lipoic and flavine adenine dinucleotide, coenzyme A and nicotinamide adenine dinucleotide.

12.4.      Conversion of succinyl-CoA into succinate

Succinyl-CoA is a high- energy compound like acetyl-CoA. Succinyl CoA has a high negative ΔG°' of hydrolysis, and can, therefore, be coupled to the direct phosphorylation of GDP → GTP (which is equivalent to ATP); this reaction is fairly reversible. This is an example of substrate level phosphorylation. The energy released during the hydrolysis of thioester bond of Succinyl-S-CoA is accompanied by the phosphorylation of guanosine diphosphate (GDP) to guanosine triphosphate (GTP). The reaction is catalyzed by succinyl-CoA synthase (= succinic thiokinase).

The GTP  readily donates its terminal phosphate group to ADP to form ATP by the action of Mg+2-dependent enzyme, nucleoside diphosphokinase present in the interspace membrane of mitochondria. This is a reversible reaction.

12.5.      Dehydrogenation of succinate to fumarate

The oxidation of succinate to fumarate is the only dehydrogenation reaction in the citric acid cycle in which NAD+ does not participate. In this reaction the hydrogen is directly transferred from the succinate to flavoprotein enzyme and fumarate is formed. The succinate dehydrogenase is a flavoprotein located on the inner mitochondrial membrane. The enzyme contains the reducible prosthetic group flavin adenine dinucleotide (FAD) as the coenzyme. FAD functions as the hydrogen acceptor in this reaction, rather than NAD+. this is because the free energy change is insufficient to reduce NAD+.

In succinate dehydrogenase, the isoalloxazine ring of FAD is covalently linked to a histidine side chain of the enzyme.  This is a reversible reaction.

Fumarate is hydrated to form L-malate in the presence of fumarate hydratase (formerly known as fumarase). This is a reversible reaction and involves hydration in malate formation and dehydration in fumarate formation.

Fumarate hydratase is highly specific and catalyzes trans addition and removal of H and OH and  does not act on malate, the cis-isomer of fumarate.

Malate dehydrogenase is a good example of a reaction that has a net flow opposite to an unfavorable equilibrium. That is the oxidation of malate by NAD+ to produce oxaloacetate + NADH + H+ has a ΔG°' of + 7 kcal/mole.

Next Previous