5.5.1.     Regulation of sister Chromatid separation by the APC

Proteolysis of securin mediated by APC-C CdC-20 at metaphase liberates separase, a protease that cleaves the SCC1 cohesion subunit responsible for sister chromatid cohesion. APC-C CdC-20 also initiates cyclin B degradation in mitosis, which is important for activation of separase. Activation of APC-C CdC-20 is controlled by Emi1 and the spindle checkpoint. Securin degradation not only promotes sister chromatid separation but also releases the phosphatase Cdc14 from the nucleolus. The Cdc14 protein is part of a complex mitotic exit network. Release of Cdc14 leads to dephosphorylation and activation of Cdh1. Activated APC-C Cdh–1 finally degrades mitotic cyclin. Further at the M to G1 transition and maintains their low state of activity during G1

APC–C consists of a catalytic core which includes the cullin subunit Apc2 and RING H2 domain subunit Apc11. The domain of Apc2 forms a tight complex with Apc11,and mediates the ubiquitylation of substrates. The other core proteins providing molecular scaffold support includes Apc1, largest subunit and Ap). APC–C substrates have recognition amino acid i.e. can have D-box sequence (RXXLXXXXN) or KEN-box sequence (KENXXXN)  that enable the APC/C to identify them where R represents arginine, L is leucine, N is asparagine, K is  lysine, E is glutamate and X is any amino acid.

5.5.2.     Regulation of APC activity

The APC is active from mitosis until the end of G1.The affinity of activators of the APC is regulated by phosphorylation of APC subunits. Cdc20 activity is regulated by transcription and APC-C Cdh–1 dependent degradation leading to APC-C Cdh–20 activity from early mitosis until the M to G1 transition . Cdk1 and MAPK can phosphorylate Cdc20; although it is controversial whether phosphorylation of Cdc20 is necessary for APC activation in human cells, it is required for its inhibition by the spindle checkpoint

Initially it has been reported that the protein level of Cdh1 remains relatively constant throughout the cell cycle) and Cdh1 is activated by dephosphorylation from the M to G1 transition until the end of the G1 phase. However, there are also reports that Cdh1 levels oscillate during the cell cycle at least in human cells. The subcellular localization of Cdh1 is cell cycle regulated and Cdh1 is nuclear during G1 and in the cytoplasm between S phase and the end of mitosis. Cdk-dependent phosphorylation leads to efficient inactivation of Cdh1 by nuclear export  and prevention of APC binding, thus restricting APCCdh1 activity to the points in the cell cycle when Cdk activity is low.

Phosphorylation of core APC subunits upon entry into mitosis by Cdk1/cyclin B and polo protein kinases Plk/Cdc5/Plo1 enhances Cdc20–APC interaction. One or more subunits (Apc1, Cdc27, Cdc16 and Cdc23are phosphorylated during mitosis ) and dephosphorylation can inactivate the mitotic APC. Dephosphorylation of Cdk1-phosphorylation sites of the APC may inactivate the mitotic APCCdc20 by dissociation of Cdc20, and Cdh1 then replaces Cdc20, leading to degradation of Cdc20 during mitotic exit and G1. On the other hand, protein kinase A (PKA)-mediated phosphorylation of core APC subunits can also inhibit APC activityand dephosphorylation of PKA phosphorylation sites, possibly by the phosphatases (PPs) PP1 or PP2A increases APC activity and Cdc20 binding. Therefore, the phosphorylation of some subunits may have activating effects, whereas the phosphorylation of other subunits may have inhibitory effects. However, the precise nature of these phosphorylation/dephosphorylation events and how they affect APC regulation still remains to be elucidated in more detail.

5.6.         Metaphase to anaphase transition:

Model of the regulation of mitosis and G1 by APC-dependent cyclin proteolysis. The first phase of cyclin B1/Clb2 proteolysis by APCCdc20 mediates spindle disassembly and cytokinesis. APCCdc20-dependent degradation of cyclin A2/Clb5 leads to activation of Cdh1 and in yeast of the CKI Sic1 downregulating mitotic kinase activity in G1. Whether there is any role of human CKIs such as p21 or p27 in this context has to be defined. APCCdh1 inactivates cyclin B1/Clb2 further during mitotic exit and the G1 phase of the cell cycle to regulate cell growth and the length of G1 allowing cell differentiation and correct assembly of pre-RCs at origins of replication and subsequent complete and accurate DNA replication

Metaphase Cyclin A is degraded and at the termination of mitosis Cyclin B is degraded.

Regulation of cell cycle progression by APC/C-dependent proteolysis. (A) Sister chromatid separation and Cdk1 inactivation both depend on APC/CCdc20. Activation of APC/CCdc20 but not APC/CCdh1 requires phosphorylation of core subunits by Cdk1–cyclin B. APC/CCdc20 mediates sister chromatid separation and Cdk1 inactivation by degrading securins and B-type cyclins, respectively. APC/CCdc20also creates the conditions that keep Cdk1–cyclin B complexes inactive during the ensuing G1 phase. Cdk1 inactivation by APC/CCdc20 permits release from its inhibitor of the Cdc14 phosphatase which, by dephosphorylating Sic1 and Cdh1, causes accumulation of a CKI and activation of APC/CCdh1. Broken lines indicate proteolysis and P in a circle indicates phosphorylation. (B) Changes in the abundance and activity of CDKs, the securin Pds1, the CKI Sic1, and both forms of the APC/C during the cell cycle.

Anaphase is the stage of mitosis or meiosis when chromosomes are split and the sister chromatids move to opposite poles of the cell. During metaphase, APC/C is inhibited until all the sister kinetochores are attached to opposite poles of the  mitotic spindle. When all the kinetochores are properly attached, APC/C becomes active and promotes binding to cdc20. M cyclins and securin are then targeted for degradation through ubiqutylation by APC/Ccdc20 leading to the onset of anaphase stage. Pds1p control the transition from  Metaphase to anaphase.CDC20 is required to degrade the pds1p.

5.7.         M to G1 transition :

After the completion  of mitosis,  the entry into another round of mitosis is prevented by inhibiting Cdk activity. During the transition from metaphase to anaphase, Cdh1 is phosphorylated by M-Cdk and thus prevent it from attaching to APC/C. As the M-Cdk is degraded in later stage of mitosis, cdc20 gets released and Cdh1 can bind to APC/C, thus keeping it activated for the M/  G1transition. Cdh1 is necessary for APC to degrade the Cyclin B. Degradation of Cyclin B is mark of exit of Mitosis.

Next Previous