6.3.1.     Ratinoblastoins :

Rb is a large gene (300kb), although mostly mutations are in the 3kb coding region and mostly involve chromosomal changes. Several retinoblastoma can arise in one eye, each with a different Rb mutation. The Rb protein has about 10 phosphorylation sites. Rb has the ability to interact with other proteins. Over 25 Rb-binding protein have been identify with functions such as nucleosome structure(Brm), Tyrosine phosphorylation (abl), oncogenes (Mdm2) and transcription factors (E2F, DP) are responsible for proliferation. The Rb proiein has more than 10 phosphorylation (ser/thr) sites. Conversion from hypo- to hyperphosphorylated states changes the interaction of Rb with other proteins. Rb binds with transcription factor E2F. It is regulated by phosphorylation.  In hypophosphorylated state of Rb the E2f is bounded this makes E2f inactive. The proliferation of cell cycle is regulated by cyclin dependent kinases (CDKs). These cyclin-dependent kinases phosphorylate and inactivate Rb, there by relieving the cycle block.

The released E2F stimulates the transcription of gene that regulate growth , such as cdc2, myc and DNA polymerase.

Rb also inhibits transcription from rRNA and tRNA genes by binding of UBF (upstream binding factor) and TF-IIIB(transcription factor IIIB) . Rb thus influences the mass of a cell(protein content). Rb suppression occurs normally by hyperphosphorylation and abnormally by Rb mutation or binding to other proteins.

6.3.2.     p53

The p53 tumor suppressor gene is activated in response to a wide variety of cellular stresses including DNA damage, ribonucleotide depletion, redox modulation, hypoxia, changes in cell adhesion, and the stresses created by activated oncogenes. The p53 protein work as transcription factors and activated the genes which is involved in DNA repair, apoptosis and growth arrest. These activities of P53 help in maintaining the genomic stability. Hence P53 is called as guardian of genome.

If normal p53 is mutated and non-functional by binding of other protens.p53 has four functional domains involved transcription activation domain(TAD), DNA binding domain(DBD), oligomerization domain(OD), autoinhibitory domain(AID). Each domains binds to several proteins that regulate p53 function. P53 binds to its response element present upstream to the gene to transcribe the gene. P53 binds in tetrameric form. p53 increase the expression of Bax, p21, insulin-like growth factor binding protein 3(IGFB3), GADD45 and thrombospondin. Expression of genes such as Bcl2, Fos and jun can be inhibited by p53. Thus p53 inhibits cell proliferation.

 The gene p21 that code for cyclin-dependent kinase inhibitor. p21 inactivates CDK that is essential for DNA synthesis. GADD  binds to a protein proliferating cell nuclear antigen(PCNA) that needed for both DNA synthesis and repair. Hence, p53 inhibit DNA synthesis while allowing repair to continue. DNA damage activates p53  function by post –transcriptional and cell-type specific mechanisms.

Normal p53 show inactivation by protein binding. For example- Adenovirus codes for E18 that binds to TAD of normal p53 and block its transcription. Some human sarcomas have mdm2 gene that have same end results. Human papilloma virus  have protein E6 that binds to OD and prevents dimerisation, while the HBX protein of hepatitis B virus binds and inactivates p53.

P53 transcribe the thrombospondin, PAI, KAI, BAI and they block the angiogenesis. Mutation in p53 thrombospondin, PAI, KAI, BAI.

Next Previous